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Abstract 

Within certain good approximations the probability 
distribution function (p.d.f.) used to describe mosaic- 
block orientation in secondary-extinction models is 
exactly analogous to the p.d.f, for atomic thermal 
motion in the harmonic approximation. Use is made of 
this relationship to explain carefully, with the aid of 
several diagrams, certain distinctions and relationships 
common to both p.d.f.'s - which if not properly 
understood can lead (and have led) to some important 
confusions. For example, if the three-dimensional p.d.f. 
is Gaussian, surfaces of constant probability density 
are ellipsoidal (e.g. the thermal-vibration ellipsoid); but 
the scattering process 'sees' this p.d.f, as a one- 
dimensional projection, the half-width of which lies on 
a fourth-order surface (shaped, for example, like a 
peanut shell). For extinction it is shown explicitly that 
the form of this projected one-dimensional function is 
independent of experimental conditions (e.g. col- 
limation), and that an earlier form [Coppens & 
Hamilton (1970), Acta Cryst. A26, 417-425], still 
commonly used and tested, is always incorrect. Apart 
from the intentional restriction of the detailed analysis 
of secondary extinction to type I extinction (in which 
mosaic-block orientation is the dominant effect), the 
approximations adopted are shown to have a wide 
range of validity. The (unusual) conditions under which 
the approximations may be sufficiently invalid to 
produce detectable effects are examined qualitatively in 
relation to the possibility of experimental investigations. 

Introduction 

In structure analysis the thermal motion of an atom is 
described by a three-dimensional probability distri- 
bution function (p.d.f.). In the harmonic approxi- 
mation this p.d.f, is Gaussian and surfaces of constant 
probability density are then ellipsoidal - the familiar 
'thermal-vibration ellipsoid'. Current models of secon- 
dary extinction also use a three-dimensional p.d.f, to 
describe mosaic-block orientation. Again, a Gaussian 
function is usually a good approximation, though a 
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Lorentzian form is often found to give a significantly 
better fit to the data. 

In both cases - thermal motion and extinction - the 
scattering process 'sees' a one-dimensional projection 
of the three-dimensional p.d.f. The thermal motion 
p.d.f, is 'seen' projected onto a line in the direction of 
the scattering vector, S; the mosaic-block orientation 
p.d.f, is 'seen' projected onto a line in the direction D, 
perpendicular to the scattering plane. If the three- 
dimensional p.d.f, is anisotropic, the one-dimensional 
distribution 'seen' will vary with the orientation of S 
(for thermal motion) or D (for secondary extinction) 
with respect to the three-dimensional function. That is 
to say, the one-dimensional projection (of the three- 
dimensional p.d.f.) itself varies in three dimensions. In 
the case of mosaic-block orientation this latter variation 
can be mapped out directly - for example by measuring 
rocking-curve widths. 

There are thus two closely related but quite different 
three-dimensional functions to be understood and 
distinguished in considering anisotropic thermal motion 
and anisotropic secondary extinction. Importantly 
misleading confusion between the two can, and does, 
arise. One purpose of this article is to try, with the help 
of several diagrams, to make the distinction clear. In 
the case of secondary extinction, correctly relating any 
anisotropic model to experimental measurements (such 
as integrated intensities or rocking-curve widths) 
requires several other distinctions and relationships to 
be understood. These, too, are set out and discussed to 
try to clarify them. 

Reference is made to two earlier papers in which 
such topics have been treated: first for thermal motion 
(Nelmes, 1969) and then for secondary extinction 
(Thornley & Nelmes, 1974). These treatments are here 
drawn together, illustrated and considerably extended- 
expanding on a preliminary form presented recently 
(Nelmes, 1977). 

Distribution functions for thermal motion 

The position of an atom executing thermal motion 
about its mean position is described by a probability 
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distribution function (p.d.f.) in three dimensions. Let 
this p.d.f, be p ( x  1 x 2 x3) such that the probability of the 
atom being in the volume element ~XlfXzflx 3 (see Fig. 
1 is p ( x  1 X2X3)flXlflX2flX3, the product of the probability 
density at (x~ x 2 x3) and a volume element around that 
point: x~, x 2 and x 3 are coordinates relative to the 
principal axes X 1, X z and X 3. These local orthogonal 
axes, X i, do not in general bear any necessary relation 
to the crystal axes. The p.d.f, must satisfy the 
normalization condition. 

oo 

f f f p ( x  I X 2 X3) dx I dx 2 dx 3 = 1 ; 
--CO 

and throughout this paper 'normalization' will be used 
in this sense of normalization to unity. 

For harmonic thermal motion p(xlxzx3)  is a 
Gaussian 

P(Xl XzX3) = [(2r03/1 U 1 U 2 U3 ]-1 

x exp[_½(x 2 2 2 2 ~/u~)],(1) 1/u, + x2/u2 + x 

where u~, u2 and u 3 are the root-mean-square displace- 
ments (r.m.s.d.) along the principal axes X~, X 2 and X3: 
that is, there is an equal probability of the atom being in 
a volume element displaced u~ along X 1, u 2 along X 2 or 
u 3 along X 3 (Nelmes, 1969). The points (+Ul00) ,  
(0_+u20) and ( 0 0 + u 3 )  thus lie on a surface of 
constant probability* in the function p(x~xEx3). In a 
general direction, n, the radius of this particular 
constant-probability surface is equal te the displace- 
ment along n which has the same probability as +ul  
along XI etc. A possible surface of constant probability 
is illustrated in Fig. 1. For a Gaussian p.d.f, the surface 

* Probability density, strictly. But, for ease of expression, the 
distinction (made explicitly in the first paragraph of this section) is 
taken to be understood in formally equivalent contexts hereafter. 

reflected beam 

Fig. 1. A surface of constant probability (see previous footnote) 
in the probability distribution function for thermal motion. 
Symbols are defined in the text. 

is an ellipsoid (Nelmes, 1969); and this is the so-called 
'thermal-vibration ellipsoid' presented in descriptions 
of crystal structures. 

The confusion that can arise is that these ellipsoids 
are sometimes incorrectly taken to represent the 
magnitude of the root-mean-square (or mean-square) 
displacement of atoms. 

As a first step in examining how the mean-square 
displacement (m.s.d.) and root-mean-square displace- 
ment (r.m.s.d.) are correctly related to p ( x  I x2x3) it is 
helpful to distinguish the two (at least) ways of defining 
m.s.d. The temperature factor depends on the m.s.d, in 
the direction of the scattering vector S. If n is a unit 
vector along S (see Fig. 1), the m.s.d, can be 
(A) the mean value of the square of the projection 

onto n of all displacements (m.s.d.A), or 
(B) the mean value of the square of displacements 

within an elemental solid angle about n (m.s.d.B), 
such a solid angle is illustrated in Fig. 1 with a 
half-angle fla. Thus, for example, displacements 
in the element fx l fx2 f lx  3 would be excluded from 
m.s.d.B for the scattering process illustrated. 

Since diffraction is not sensitive to the position of a 
scatterer in the plane perpendicular to S, the appro- 
priate definition in this context is clearly (A). That is to 
say, scattering 'sees' thermal motion as the one- 
dimensional distribution function for a displacement x 
along n, pA(x,n), obtained by projecting the whole 
distribution p(x~x2x3)  perpendicularly onto n. As 
shown before (Nelmes, 1969), 

pA (x ,n)=  [2re(u1 z n~ + u~ n~ + u] n3Z)] -'/2 

× exp [--½xE/(u~n~ + u~n~ + ulna)], (2) 

where n i is the component of n along X v This is a 
normalized, one-dimensional Gaussian function. [Note 
the error, here corrected, in the normalization factor of 
the corresponding equation (9) in Nelmes (1969). Also 
there are some small changes in notation to reach a 
compromise between that of Nelmes (1969) and that of 
Thornley & Nelmes (1974): this is set out in the 
Appendix.] 

Definition (B) can be shown (Nelmes, 1969)to yield 
the one-dimensional p.d.f., 

ps(x,n) = [(2n) a/2 u I u2 u3] -1 

× e x p [ _ ~ x  2 2 2 2 2 (nl/u , + nz/u 2 

+ n~/u2)l zrxZ(fia) 2. (3) 

This is a bi-modal function [ps (x  = 0, n) = 0] and, of 
course, is not normalized (since only part ofp(x l  x 2 x3) 
is included). Although pB(x,n) is not relevant to the 
scattering process it is included because, as discussed 
later, it has proved helpful in understanding a recent 
confusion in the treatment of anisotropic secondary 
extinction. 

Equations (2) and (3) are derived explicitly for a 
Gaussian p ( x  I xzx3). But the distinction between, and 
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definition of, pA (x,n) and p s ( x , n )  apply to a n y  form for 
the three-dimensional p.d.f.; and, w h a t e v e r  the form of 
p(X1X2X3)  , it is 'seen' in the diffraction process as 
PA (x,n). 

R e p r e s e n t a t i o n a l  s u r f a c e s  for  thermal  m o t i o n  

For the case that the three-dimensional p.d.f., 
p(XIX2X3)  , is Gaussian the following results can be 
derived (Nelmes, 1969): 

(i) constant probability ties on an ellipsoid (Fig. 1) 
- and, as said, this is the 'thermal-vibration ellipsoid'; 

(ii) m.s.d.A lies on a sixth-order surface; 
(iii) r.m.s.d.A lies on a fourth-order surface; and 
(iv) (r.m.s.d.A) -I lies on an ellipsoid - clearly 

different from (i) since it has dimensions L-~: this 
ellipsoid is a surface of constant temperature factor (in 
reciprocal space). 

Explicit forms for these representational surfaces are 
given in Nelmes (1969), together with corresponding 
results derived from definition (B). 

Having pointed out the need to be quite clear about 
what is meant by m.s.d., attention is now focused on 
the relevant definition, (A); and the relationships 
between some principal representational surfaces are 
presented diagrammatically. Fig. 2(a) shows a surface 

x3 

Ul 

(a) 

x~ 

(b) 

1 ° 

X3 

2 x2 

: 

(c) 
Fig. 2. Representational surfaces (a) for constant probability - the 

'thermal-vibration ellipsoid', (b) for (r.m.s.d.A) -1 and (c) for 
r.m.s.d.A, when u3 > ul = u2. Note that here, and in Figs. 3 and 
5, the horizontal ( X I )(2) sections are circular in every case. It is 

further noted that surfaces with the largest axial length vertical 
(Figs. 2a, 2c, 3b, 5a, 5c) have been drawn with a slightly 
different angle o f  view f rom that used for  surfaces with the 
smallest axial length vertical (Figs. 2b, 3a, 3c, 5b). 

(ellipsoid) of constant probability in an anisotropic 
p.d.f, for thermal motion with u 3 > u 1 = uz;  the 
semi-axial lengths are k u  i (i.e. proportional to ui),  and 
here, for simplicity of presentation, the particular case 
k = 1 is chosen. The corresponding (r.m.s.d.A) -1 lies on 
an ellipsoid [see (iv) above] which, by definition, must 
have semi-axial lengths 1/u i :  this is shown in Fig. 2(b). 
Then r.m.s.d.A lies on the fourth-order surface [(iii) 
above] that is the inverse of the (r.m.s.d.A) -1 ellipsoid. 
This fourth-order representational surface for r.m.s.d.A 
has (by definition) semi-axial lengths u i, and is shaped 
like a peanut shell as illustrated in Fig. 2(c). 

Consider the X 2 X 3 plane through the (r.m.s.d.A) -~ 
ellipsoid. The trace of the surface in this plane is an 
ellipse of semi-axial lengths 1 / u  2 and I/U 3. It is a 
straightforward exercise to draw an ellipse, E, and 
convince oneself that a plot of the reciprocal of the 
radius of E is a shape like a figure eight - such as is 
shown in the X 2 X 3 plane of Fig. 2(c). In the simple case 
chosen here, the surfaces are symmetric around the X 3 
axis and so the full r.m.s.d.A surface has the peanut- 
shell form obtained by rotating the 'figure eight' around 
its long axis. The exercise with the ellipse will also show 
that the 'waisting' of the peanut shell becomes more 
pronounced as the (r.m.s.d.A) -1 ellipsoid - and so the 
thermal-vibration ellipsoid - becomes more eccentric 
(anisotropic). 

Fig. 3 illustrates in the same way the relationship 
between the representational surfaces for (a) constant 
probability, (b) (r.m.s.d.A) -1 and (c)r.m.s.d.A when 
u 3 < ul = u z. In contrast to Fig. 2, it can be seen that the 
'figure eight' in the X 2 X 3 plane of Fig. 3(c) now has its 

) 

(b) 

x2 

(c) 

Fig. 3. Representational surfaces (a) for constant probability - the 
'thermal-vibration ellipsoid', (b) for (r.m.s.d.A) -1 and (c) for 
r.m.s.d.A, when u 3 < u~ = u 2. 
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long axis along X 2. The surfaces are still symmetric 
around X 3, and so the representational surface for 
r.m.s.d.A in this case is obtained by rotating the 'figure 
eight' around its short axis. The resulting shape (Fig. 
3c) could be described as a 'buttoned cushion'.* 

In the general case, u~ 4: u 2 4: u 3, the fourth-order 
surface will be more complex. But it will retain the 
characteristic that each of its three principal sections 
will have the 'figure eight' shape - the sharpness of the 
waisting increasing with the eccentricity of the ellipse in 
the corresponding section of the (r.m.s.d.A) -1 ellipsoid. 

The important distinction - which it is the first aim of 
the paper to convey - is that between, on the one hand, 
a representational surface of constant probability of 
thermal displacement (Figs. 2a and 3a) and, on the 
other hand, the surface that represents the variation in 
three dimensions of the root-mean-square-(A) of such 
displacements (Figs. 2c and 3c). The surfaces (a) 
represent the variation in three dimensions of a 
three-dimensional distribution, p(xl x2 x3), whereas 
surfaces (c) represent the variation in three dimensions 
of (the width of) the one-dimensional distribution, 
PA (x,n), obtained as a projection o fp(x  I x 2 X3). 

It is clear that whilst the semi-axial lengths of 
surfaces (a) and (c) are in the same proportion (here 
shown equal), their shapes can be very different indeed. 
But, because the radius of the thermal-vibration 
ellipsoid is proportional to r.m.s.d.A in the principal 
directions (Figs. 2a and 3a), it is easy to make the error 
of taking this surface to represent r.m.s.d.A in a general 
direction - rather than the correct form shown in Figs. 
2(c) and 3(c). [Another path to the incorrect expec- 
tation that r.m.s.d, will lie on an ellipsoid may start 
from an implicit choice of definition (B) for m.s.d.] 

Finally, attention is drawn to the fact that, whilst the 
thermal-vibration ellipsoid has semi-axial lengths 
proportional to u l, u 2 and u 3, it is otherwise related to 
the parameters of thermal motion in an unspecified way 
unless the particular surface of constant probability 
given is defined. In Figs. 2(a) and 3(a) a surface with 
semi-axial lengths equal to u~, u 2 and u 3 has been 
chosen just, as said, to simplify the comparison with 
Figs. 2(c) and 3(c). But when the results of structure 
analyses are presented graphically, with drawings of 
the thermal-vibration ellipsoids, these ellipsoids are 
usually scaled to include 50% probability [i.e. the 
included volume is such that fv P(XlX2X3)flXldX2dx3 
= 0-5]; the semi-axial lengths of the ellipsoid are then 
1-54 u s (Willis & Pryor, 1975, p. 98). There is thus no 
single, uniquely defined thermal-vibration ellipsoid" it is 
simply one of the possible surfaces of constant 
probability in P(Xl x2 Xa). 

* The descriptions 'peanut shell' for the shape of Fig. 2(c) and 
'buttoned cushion' for that of Fig. 3(c) are not technical! - and may 
not convey familiar images to all readers. The purpose is simply to 
provide an easy way of referring to these two very different forms of 
the representational surface for r.m.s.d.A (and, later, r.m.s.m.A). 

Distribution functions for mosaic-block orientation 

The interpretation of anisotropic thermal motion has 
been rehearsed first, not only to extend and illustrate 
earlier work (Nelmes, 1969) but because, being more 
straightforward, it affords a useful introduction to the 
description of anisotropic secondary extinction. 

In this description the crystal is taken to be 
composed of mosaic blocks that are (on average) 
ellipsoidal in shape. In the most recent formulation, due 
to Becker & Coppens (1974, 1975), the size of this 
average mosaic block enters the calculation as the 
parameter fi, proportional to r(u) the radius of the 
ellipsoid in the direction u of the scattered beam. 
Equation (8) of Becker & Coppens (1975) gives a = 
~r(u) sin 20/2: the representational surface for ~ is thus 
the same ellipsoid as describes the average mosaic- 
block shape, except that it is scaled by ~ sin 20/). (see 
also Thornley, 1980). It does not seem likely, then, that 
important confusion will arise between 8 and r(u). But, 
as discussed in detail by Thornley (1980), the broaden- 
ing function, B(D) - on which type II extinction directly 
depends - is obtained from the mosaic-block shape 
(reduced to ~) via Fourier transformation (Becker & 
Coppens, 1974, 1975). This broadening function [B(D) 
in the notation of this paper (see the Appendix): D is 
defined below] then has a half-width that varies as 
1/r(u) (see Thornley, 1980); since r(u) lies on an 
ellipsoid, it can be seen from the arguments of the 
previous section that the half-width of B(D) will map 
out in three dimensions a shape such as Fig. 2(c) or 
3(c). However, in the main part of this paper it is 
assumed - as will usually be true (see Becker, 1977) - 
that the half-width of B(D) is rather small compared 
with that of the other relevant distribution, the 
distribution of mosaic-block orientations. This is 
equivalent to making the approximation that the 
secondary extinction is entirely type I. Departures from 
this approximation are certainly important and are 
discussed, in terms of the effect of the B(D) function, in 
a later section. But for a detailed discussion of the exact 
form of B(D), the representational surface for its 
half-width, and how this may be manifested in experi- 
mental measurements the reader is referred to Thornley 
(1980). 

Attention is focused here, then, on the problems that 
can and do arise in the use and interpretation of an 
anisotropic distribution of mosaic-block orientations. 

The orientation of mosaic blocks can be described by 
a p.d.f, in three dimensions, p(A1A2A3), where A i is a 
rotation about the principal axis X~ and A 1 = A 2 = A 3 = 
0 corresponds to the mean orientation taken over all 
blocks. (The axes X t bear no necessary relationship to 
the crystal axes.) To simplify the presentation here, 
p(A 1A2A3) is taken to be Gaussian - but essentially the 
same arguments could be followed through for any 
form (e.g. a Lorentzian). The Gaussian form [compare 
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with (1)] is 

p(Al A2A3) = [(2re) 3/2 01 02 03] -1 

' ~ ~ ~ ~ A ~ I o ~ ) ] ,  x exp [----~(A1/o 1 4- A2/o 2 + 

(4) 

where 01, 02 and 03 are the root-mean-square misorien- 
tations (r.m.s.m.) around the principal axes: that is, 
there is an equal probability of a mosaic block being 
misoriented (relative to the mean) 01 about X 1, 02 about 
X 2 or 03 about X 3. As before, the surface of constant 
probability is an ellipsoid, as illustrated in Fig. 4 - for 
the same spatial relationship of incident beam, scatter- 
ing vector S, and reflected beam as in Fig. 1. 

The meaning of this distribution function is perhaps 
harder to grasp than that of the p.d.f, for thermal 
displacement. For what follows it is important to 
recognize clearly that displacement from the origin of 
the function along, for example, the X 3 direction 
corresponds to increasing rotation A a around X3: the 
value of the function at some point A 3 along the X 3 
axis, p(0 0 A3), is thus the fraction of mosaic blocks, per 
unit volume of the crystal, that is misoriented through 
an angle A 3 only and exactly about X 3. Then the value 
of the function at a general point (A1A2A 3) is the 
fraction of mosaic blocks misoriented exactly A~ about 
X 1, A 2 about X 2 and A 3 about X 3. [It should be noted 
here that all misorientation angles for mosaic blocks 
will be taken to be small enough to add as vectors.] To 
keep the interpretation of p(AIA2A3) as simple as 
possible, it will be assumed, without further comment, 
that it is physically plausible to interpret the misorien- 

reflected beam 

! 

Fig. 4. A surface of constant probability in the probability 
distribution function for mosaic-block orientation. The plane 
shown passing through the origin and containing S is the median 
co-reflecting surface for the scattering process illustrated. The 
small cubes show a possible convention for the sense of rotation 
(from the mean orientation) with increasing displacement from 
the origin. Other symbols are defined in the text. 

tation, A, of a mosaic block (from the mean orientation) 
simply as a real rotation through A. This essentially 
attributes mosaic-block misorientation solely to local 
bending of the reflecting planes and neglects the effect 
of local variations of d spacing. The latter would give 
rise to 0- and wavelength-dependent effects. 

As with thermal motion, it is now necessary to 
consider how this p.d.f, is 'seen' in a scattering process. 
An integrated intensity is measured by rotating the 
crystal, and so the distribution p(A 1 A 2 A3) , about some 
axis R. In conventional four-circle diffractometer 
geometry R is coincident with D, the normal to the 
scattering plane (the plane containing the incident 
beam, the scattering vector S and the reflected beam). 
In non-zero-layer measurements using normal-beam 
geometry R is inclined to D by an amount that varies 
from reflection to reflection. This introduces some 
complications (discussed later), but no differences in 
principle from the results obtained with R and D 
coincident. To avoid inessential complexity at this 
stage, then, detailed discussion will be restricted to the 
case R = D. 

Then it is important to make a clear distinction 
between (i) how much the reflected beam is 
extinguished and (ii) how much of the reflected 
intensity is measured (i.e. enters the detector). Ex- 
tinction essentially depends on the interaction between 
the crystal and each incident photon (or neutron). For 
secondary extinction (within the limit of the Darwin 
transfer equations) what matters is, first, how many 
mosaic blocks are so oriented as to be in the reflecting 
position [relative to some incident photon (neutron) 
direction, ko], and secondly the probability that any one 
of these mosaic blocks will reflect. The first factor 
depends on (i) the size, shape and orientation of the 
crystal, (ii) the number of mosaic blocks per unit 
volume of the crystal, (iii) the form ofp(A1AEA3) and 
its orientation relative to k 0 and (iv) - as discussed later 
but neglected at this stage - broadening effects [such as 
B(D) above]. The second factor depends on (i) Q 
[proportional to 23F2(hkl)Lp, where it is the incident 
wavelength, F(hkl) is the structure amplitude and Lp is 
the Lorentz-polarization factor], (ii) the average 
mosaic-block volume and, again, (iii) broadening 
effects - which, as suggested earlier and discussed in 
detail by Thornley (1980), depend mainly on the 
average size, shape and orientation of the mosaic 
blocks. The essential point to take from this is that the 
amount of extinction does not depend on the colli- 
mation of either the incident or the reflected beam. In a 
real experiment the incident beam is divergent and the 
reflected beam, even for a perfectly collimated incident 
beam, is divergent. If the whole integrated intensity is to 
be measured, all of the reflected beam for each of the 
directions in the (divergent) incident beam must enter 
the detector. Such considerations are important, of 
course, and are discussed later. But here the question 
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addressed - and the question on which secondary 
extinction entirely depends if broadening effects are 
neglected - is how the p.d.f., p(AIA2A3), is 'seen' by 
incident photons (neutrons) in a given scattering pro- 
cess (from a given crystal in a given orientation). 

So, for the present purposes, these simplifying 
assumptions can helpfully be introduced: (i) that the 
incident beam is perfectly collimated, (ii) that the 
intrinsic reflection width of mosaic blocks [i.e. the 
half-width of B(D)] is negligible and (iii) that the crystal 
is spherical. With these assumptions, all the factors 
listed in the preceding paragraph as affecting secon- 
dary extinction are reduced to only one that varies in a 
scan (about D) through a given reflection - namely the 
orientation of p(A~ A2A3) relative to k 0. Starting from 
the peak of the reflection the scattering process 
illustrated in Fig. 4 will then 'see' p(A~A2A3) in the 
following sequence: 

(i) all points in the plane shown in Fig. 4, 
perpendicular to D and passing through the origin, 
represent mosaic blocks with zero misorientation about 
D, and so (to a very good approximation) they scatter 
together - at the peak of the reflection; 

(ii) then all points in an adjacent parallel plane 
represent mosaic blocks which have the same (small) 
misorientation, A, about D, and so scatter together - a 
little off the peak of the reflection, when the crystal has 
been rotated A about D; 

(iii) and so on. 

Thus, with the assumptions made, one plane (of 
mosaic-block orientations) at a time is picked out of 
p(A 1A2A3); and these planes are perpendicular to D. 

It is in fact only an approximation - though, as said 
under (i) immediately above, a very good one - to treat 
these 'planes' as strictly planar. More exactly, these 
'planes' have a small curvature (the same for all 
of them) around a line parallel to S, superimposed on 
which there is a second, even smaller curvature (zero 
for the plane shown in Fig. 4, and increasing away from 
it) around a line parallel to N = D x S. However, the 
departure from strict planarity is negligible except at 
high scattering angles with crystals which have a very 
wide mosaic spread (say 30'). The further (very good) 
approximation is thus made that the surfaces succes- 
sively picked out ofp(Al A2A3), as it is rotated about D, 
are exactly planar. These surfaces will be referred to 
hereafter as 'co-reflecting surfaces' or, if the context is 
unambiguous, as 'planes'. 

Thus, to a very good approximation, in a scan about 
D p(A~AzA3) is sampled in successive 'planes' perpen- 
dicular to D. It is then clear that the one-dimensional 
distribution function 'seen' in the scattering process is 
p(AIA2A 3) projected perpendicularly onto D. This 
one-dimensional function, PA(A,D), is thus related to 
p(A~ AzA3) exactly as pA(x,n) is related to  p(xlx2x3); 
and so [compare with (2)] 

pA(A,D)=[2rc(0-] df + cr~ d~ + 0"2 d])]-,// 
x exp [-½A2/(0"] d] + a 2 d~ + 0-~ d])], (5) 

where d i is the component of D along X u This is a 
normalized, one-dimensional Gaussian function. 
Though this explicit form for PA (A,D) is derived for a 
Gaussian form for p(A~ A 2 A3) [see (4)], the prescription 
stated above for the derivation of pA(A,D) is entirely 
general - it applies whatever the form ofp(A 1A 2 A3). 

Representational surfaces for mosaic-block orientation 

If p(A~A2A3) is Oaussian it is clear that the results 
quoted already for thermal motion will apply, namely: 

(i) constant probability lies on an ellipsoid (e.g. Fig. 
4); 

(ii) mean-square misorientation (A) (m.s.m.A) lies on 
a sixth-order surface; 

(iii) r.m.s.m.A lies on a fourth-order surface; and 
(iv) (r.m.s.m.A) -1 lies on an ellipsoid. 

Since the forms of, and relationships between, these 
surfaces are exactly as already discussed for thermal 
motion, only one illustration is given. Fig. 5 shows the 
analogue of Fig. 2, with a i replacing u i and 0 3 ~> 0"1 = 

a 2 -  the case that gives a peanut-shell-shaped surface for 
r.m.s.m.A (Fig. 5c). [The case 0"3 < 0"1 = 0"2 will yield a 
'buttoned-cushion'  shape for the r.m.s.m.A surface, as 
illustrated for r.m.s.d.A in Fig. 3c.] 

Again, the important distinction to be made is that 
between Fig. 5(a) - a surface of constant probability in 

X~ 
~. ---x~ (b) 

% 

(a) Q ~ x ~  

(el 
Fig. 5. Representational surfaces (a) for constant probability of 

mosaic-block orientation, (b) for (r.m.s.m.A) -~ and (e) for 
r.m.s.m.A, when % > ol = az. 
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the three-dimensional function p(A1A2Aa),  and Fig. 
5(e) - the surface that represents the variation in three 
dimensions of r.m.s.m.A, the width of the one-dimen- 
sional function pA(A,D). Failure to make this distinction 
can be a bountiful source of confusion, especially as the 
r.m.s.m.A surface can be mapped out by making 
measurements of rocking-curve widths. A rocking 
curve about D, when deconvoluted from the resolution 
function, is a direct measure of pA(A,D). [This, like 
other statements in this section, is strictly true only 
within the (generally good) approximations adopted in 
deriving PA (A,D) in the preceding section.] 

Indeed, some rocking-curve measurements made 
recently by Lehmann & Schneider (1977) beautifully 
illustrate the principal points made so far in this paper. 
The measurements were performed on plastically 
deformed single crystals of copper, and the rocking- 
curve widths for successive orientations round the 
scattering vector were found to vary as illustrated 
schematically in Fig. 6 (the scattering vector is 
perpendicular to the plane of the diagram; the 
rocking-curve width is greatest for a scan about X 3 and 
least for a scan about X 0. In three dimensions these 
measurements mapped out a strongly-waisted, peanut- 
shell-shaped surface, quite symmetric about its long 
axis. 

This result was at first interpreted as showing the 
three-dimensional mosaic-block orientation p.d.f, to be 
highly non-Gaussian (Lehmann & Schneider, 1977) 
- essentially because the authors initially tried to use the 
(incorrect) Coppens-Hamilton (1970) form for the 
one-dimensional distribution 'seen' in the scattering 
process, a form that predicts an ellipsoidal surface for 
r.m.s.m. (as explained in the following section). In fact, 
their observations afford a striking illustration of the 
distinction that has to be made between the constant- 
probability surface and the r.m.s.m.A surface. The 
surface they found is very much like that shown in Fig. 
5(e) except that it is more strongly waisted and not 
quite symmetric about the long axis. This, then, is 

x3 

Fig. 6. A schematic representation of the typical variation of 
rocking-curve width (•  • is the width for a scan about the 
direction of • • ), with rotation round the scattering vector, 
found by Lehmann & Schneider (1977) in a plastically deformed 
single crystal of copper. 

entirely consistent with a Gaussian-like* p(A1A2A3) 
that is quite strongly anisotropic (0.3 >> 0"1 ~- 0"2). 

In a note at the end of their paper, Lehmann & 
Schneider (1977) accept this in relation to the similar, 
though less strongly waisted, peanut-shell surface they 
derive from their crystal-structure refinements. They 
remark, though, that the difference between the 
predictions of the Coppens-Hamilton form and of 
pA(A,D) - which they denote P2(A,D) - has generally 
been assumed to be small for weak extinction. This 
raises a further important point. No doubt it is true that 
such an assumption is often made, but it is incorrect 
because it fails to distinguish the mosaic-block distri- 
bution from the strength of extinction. The latter 
depends not only on the magnitudes of 0"i but also on 
experimental conditions such as the wavelength and 
type (X-ray or neutron) of the radiation used, the size 
of the crystal and so on; the former is a constant, 
intrinsic property of ' the crystal and depends only on 
the relative magnitudes of 0"1, 0"2 and a 3. It is thus 
possible, probably common, to have very weak 
extinction and yet a highly anisotropic mosaic-block 
distribution - as Lehmann & Schneider (1977) so 
convincingly show. 

T h e  C o p p e n s - H a m i l t o n  f o r m u l a t i o n  

Corresponding to the distribution pB(x,n) for thermal 
motion, it is possible to define a distribution, pA(A,D), 
which includes mosaic-block misorientations about 
axes lying only within a solid angle (of half-angle fia) 
around D. For the case that p(A 1AzA 3) is Gaussian, 

1 2 2 2 ps(A,D) = [(27C) 3/2 OIO'203 ]-1 exp [--~A (dl/0.  I 
2 2 d~/0.~)] ~rAZ(Sa) 2, (6) + dz /a  2 + 

which, of course, is the same as (3) with x replaced by 
A, u i by 0.i and n i by d i. Equation (6) [or (3)] describes 
a bi-modal distribution - as must any form for the 
pB(A,D) [or pn(x,n)] distribution - and is not nor- 
malized since it includes only a small part of 
P(A1 A2 A3). 

Although the Ps one-dimensional distributions do not 
correspond to any possible diffraction experiment they 
are helpful here. It is shown in Nelmes (1969) that 
r.m.s.d.B (and so, also, r.m.s.m.B) lies on an ellipsoidal 
surface for a Gaussian p ( x l x 2 x  3) [or p(A1AEA3)]. It is 
thus possible to identify two paths to the incorrect 
expectation that r.m.s.m, should lie on an ellipsoid for a 
Gaussian three-dimensional p.d.f.: first by confusing 

* These rocking-curve measurements must 'see' an overall p.d.f. 
that includes the macroscopic bending of the copper crystals 
(Lehmann & Schneider, 1977). The expected effects would be to 
introduce some 'flattening' as well as extension of the intrinsic p.d.f. 
along the bending axis. However, if there is a 'flattening' component 
in this case it does not appear to be significant enough to obscure 
the illustration these measurements afford of the point being made 
here. 
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the (fourth-order) surface of r.m.s.m, with the (ellip- 
soidal) surface of constant probability, and secondly by 
choosing, implicitly or explicitly, a definition of m.s.m. 
that predicts an ellipsoidal surface for r.m.s.m. 

An important example of the second path being 
taken is in the formulation of anisotropic extinction 
advanced by Coppens & Hamilton (1970). Their 
treatment assumes mosaic-block orientation to be 
described by a Gaussian function in three dimensions, 
but then uses for the one-dimensional distribution the 
form 

pn, (A,D)= [(27r) -l  (d2/a 2 + d2/a 2 + 
1 2 2  2 2 2 d2/o~)l. x exp [-~A (d l /o  I + d2/a z + 

(7) 

This,normalized, Gaussian distribution function incor- 
porates two mistakes: 

(i) as first pointed out by Thornley & Nelmes (1974), 
it excludes from reflection mosaic blocks with any 
component of misorientation about an axis other than 
D;* and 

(ii) a distribution that thus picks out from the 
three-dimensional p.d.f, only an elemental cylinder 
around D loses any clear meaning (in relation to the 
three-dimensional p.d.f.)if it is normalized: its 'proper 
form' is 

pn,,(A,O) = [(2re) 3/z or, cr 2 0"31-1 exp [-½AZ(dZl/Cr~ 

2 2 d2/a~)l 7r(dr) z, (8) + d2/(7  2 + 

where dr is the cylinder radius. However, because 
pB,(A,D) is normalized, it can be seen [(5) and (7)] that 
p~,(A,D) and pA(A,D) are identical for the special cases 
of D along X1, X 2 or X 3. In these special cases the 
predictions of the Coppens-Hamilton form, pB,(A,D), 
and the Thornley-Nelmes form, pA(A,D)~ agree (acci- 
dentally) because of cancelling errors in the former. 

A comparison of (6) and (7) shows that PB(A,D) and 
pB,(A,D) differ only in their normalization factors and 
the isotropic term A2; and so r.m.s.m.B', like r.m.s.m.B, 
lies on an ellipsoidal surface. Altogether, then, the 
Coppens-Hamilton formulation uses a distribution 
pB,(A,D) which does not in particular, and cannot in 
general, correspond to any experiment, and which for a 
Oaussian p(A1A2A3) predicts an ellipsoidal represen- 
tational surface for r.m.s.m. Hence (probably) the 
initial expectation of Lehmann & Schneider (1977) that 
their rocking-curve measurements of r.m.s.m, should lie 
on an ellipsoid and their initial (incorrect) conclusion 
that the actual peanut-shell shape revealed a highly 
non-Gaussian p(A 1/t2 A3). 

* The exponential term in (7) is simply (proportional to) the 
"product of the probabilities for those three component misorien- 
tations which correspond to a resultant misorientation of A about 
D. 

It is not the wish or intention to labour one small 
error in the important advance made by Coppens & 
Hamilton (1970). The object is solely to demonstrate 
convincingly that it is an error. Since this was shown by 
Thornley & Nelmes (1974), quite a number of 
experimental papers have compared the fit obtained 
with the Coppens-Hamilton and Thornley-Nelmes 
'formulations' as if they were competing models. But 
the latter authors are of the opinion that this is barren 
labour: it seems plain enough that Coppens & 
Hamilton (1970) were simply in error over this one 
point, and this has been accepted in the more recent 
published work of Coppens (Becker & Coppens, 1975). 
If the point needs" more experimental demonstration 
than already given by Thornley & Nelmes (1974), the 
results of Lehmann & Schneider (1977) seem more 
than adequately convincing. 

Thornley (1980) has shown that in advancing the 
case for pA(A,D) as against pB,(A,D) an error was made 
by Thornley & Nelmes (1974). It has been reproduced, 
reasonably enough, in the note at the end of Lehmann 
& Schneider (1977); and also in Nelmes (1977) and in 
the recent comprehensive reformulation of extinction 
theory by Becker & Coppens (1974, 1975). Although 
none of the positive conclusions reached is affected, this 
error may have contributed to the continued use of the 
Coppens-Hamilton formulation by suggesting con- 
ditions (albeit impossible to achieve) under which that 
formulation could be valid. The mistake turned on a 
failure to make the distinction discussed already 
between how much the reflected beam is extinguished 
and how much of the reflected beam enters the 
detector. Thus collimation was thought, incorrectly, to 
be relevant to the appropriate choice of the one- 
dimensional function, and it was wrongly stated that 
pR,(A,D) - p l ( A , D )  in the notation of Thornley & 
Nelmes (1974) - corresponds to perfect collimation of 
the incident beam. But, as now shown more carefully 
here (see also Thornley, 1980), the appropriate one- 
dimensional function is always pA(A,D). Collimation 
has no effect whatever on how p(AIA2A3) is 'seen' in 
the scattering process; it affects only how much of the 
reflected beam is detected - a quite separate topic 
which is discussed in the following section. 

A second, closely related, error appears in Nelmes 
(1977): it is incorrectly surmized that pB(A,D) could be 
'seen' in a highly collimated experiment. 

Collimation conditions for integrated-intensity and 
rocking-curve measurements 

Consider a perfectly collimated experiment: that is to 
say, the incident beanl is confined to the one direction 
k 0 and the reflected beam to the one direction k (by an 
extremely small aperture at the detector). S, k 0 and k lie 
in the scattering plane, all exactly perpendicular to D. 
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Fig. 7 shows again a surface of constant probability 
in p(A~A2A3), with the same scattering geometry as 
Fig. 4. At the peak of the reflection, mosaic blocks with 
zero misorientation about D and all possible misorien- 
tations about S (i.e. line AA') will reflect into the 
detector. The last three words are crucial: at this 
position of the crystal (the peak of the reflection) 
mosaic blocks with all orientations in the co-reflecting 
surface through p(A~ A 2 33) shown in Fig. 4 will reflect, 
but not, with the collimation assumed, into the detector. 
[Points away from the line S in the co-reflecting surface 
(Fig. 4) represent misorientations with some rotation 
about the direction N ---- D x S. These will give rise to 
reflected beams which are to one side or the other of 
the scattering plane - and so are excluded from this 
detector.] If the crystal is now turned through a small 
angle A about D, mosaic blocks with exactly this angle, 
A, of misorientation about D and all possible misorien- 
tations about the direction parallel to S (i.e. line BB') 
will reflect into the detector. 

It can be seen, then, that with very tight collimation 
the mosaic-block orientations that can reflect into the 
detector in a full scan lie in the plane containing S and 
D, as shown in Fig. 7. [This surface is not exactly a 
plane; but, except for extreme cases, it is very closely 
planar, and can certainly be assumed to be so for the 
present argument.] Such a measurement clearly does 
not record the integrated intensity: the full extent of 
p(A1 A2 A3) along D is scanned, but not along N. 

If the collimation is relaxed, mosaic blocks with 
small misorientations about N can reflect into the 
detector - which thus 'sees' a slice through p(A~ A 2 A3) 
centred on the plane, shown in Fig. 7, containing S and 
D. For the measurement of complete integrated 

intensity this slice must be wide enough to include the 
whole significant extent of p(A~A2A 3) in the N 
direction. And for some possible forms of p(AiAzA3), 
such as a Lorentzian, this requirement may well not be 
fulfilled by what are considered 'normal '  apertures if the 
specimen crystal has a moderately large mosaic spread. 

This point about possible partial masking of the full 
integrated intensity by an insufficiently large receiving 
aperture is not advanced as anything new (see Denne, 
1977, for example). It is included here to help clarify a 
distinction made earlier that is crucial to the main part 
of this paper - namely that between how much of 
p(A~ ,dzA3) is 'seen' by an incident beam (which is what 
matters for extinction) and how much ofp(A~ A2A3) is 
'seen' by the detector (which is what matters for 
measurement of integrated intensity, and also rocking 
curves). The fact that under conditions of tight 
collimation only part of the reflected beam enters the 
detector makes no difference to the amount by which 
the reflected beam is extinguished. 

Thus it is that extinction is determined always, under 
all conditions, by pA(A,D). 

The collimation conditions for the detector to 
measure the whole integrated intensity amount to the 
conditions for the detector to 'see' all of pA(A,D). So, 
not only in measuring integrated intensities but also - 
perhaps more so - in experiments such as those of 
Lehmann & Schneider (1977) it is important that these 
conditions be met. If they are not, then the rocking 
curves (deconvoluted from the resolution function) are 
no longer direct measures of pA(A,D); and the widths 
obtained cannot be related directly to the parameters of 
p(dl A2 d3). 

reflected beam 

Fig. 7. The same surface of constant probability, in the probability 
distribution function for mosaic-block orientation, as is shown in 
Fig. 4. The orientations that can reflect into the detector in a 
perfectly collimated (and aligned) experiment lie in the plane 
shown passing through the origin, and containing S and D. Other 
symbols are defined in the text. 

The validity of the approximations; and experimental 
investigations 

In the case of thermal motion the only approximation 
made is that the motion is harmonic and so p(x 1 x2x3) 
is Gaussian. Very often the p.d.f, is significantly 
anharmonic (indeed, in principle, it can never be 
exactly harmonic) and so non-Gaussian. The explicit 
results discussed earlier are thus in some measure 
approximate - to exactly the degree that the 'thermal- 
vibration ellipsoid' is approximate. But what is of 
primary concern here is the relationship between 
p(xlx2x3) , whatever its form, and how it is 'seen' in a 
scattering process: and the statement that it is always 
'seen' as pA(x,n), obtained by projecting P(XlX2X3) 
perpendicularly onto n, stands as an entirely general 
prescription. 

The discussion of secondary extinction contains 
many more approximations. These are summarized - 
(1) to (5) - in this paragraph and then, in turn, 
discussed in detail. (1) Overall looms the assumption 
that the microstructure of real crystals can be approxi- 
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mated reasonably (or, at least, parameterized ade- 
quately) by a distribution of orientations of an average 
perfect mosaic block - where the distribution function is 
analytic (Gaussian or Lorentzian) and uniform 
throughout the crystal, and the average mosaic block 
has an ellipsoidal shape. (2) In discussing how 
P(AIA2A3) is 'seen' in the scattering process the 
incident beam has been taken to be perfectly col- 
limated; and (3) the effects of the intrinsic dynamic 
width of Bragg reflections and of their diffraction 
broadening have been neglected. Under these con- 
ditions, an incident photon (or neut ron) ' sees '  as 
aligned to reflect all those mosaic blocks whose 
orientations lie in an infinitesimally thin surface through 
p(A~ /12 /13); this 'co-reflecting surface' is perpendicular 
to D where it crosses D and, as described earlier, is 
slightly curved; but (4) these surfaces have been taken 
to be exactly planar. (5) Finally, only the simple case of 
four-circle geometry has been discussed, in which the 
rotation axis is always D. 

(1) In one sense the mosaic-block model is obviously 
a very poor one: a real crystal cannot be entirely 
composed of ellipsoidal mosaic blocks packed together. 
But here again a clear distinction must be borne in 
mind, which is perhaps an important one for all work in 
this area. The essential purpose of extinction models 
has not been to provide an accurate description of real 
crystal microstructure, but to model adequately that 
difference between observed and calculated integrated 
intensities which is attributed to extinction. The 
achievement of the latter does not necessarily depend 
on a knowledge or incorporation of the former: in a 
helpful review of the range of applicability of extinction 
models, Becker (1977) shows that the mosaic-block 
model gives results surprisingly close to those achieved 
recently (with far greater labour) from more fundamen- 
tal theories. There are thus good empirical grounds for 
accepting the mosaic-block approximation for the 
present (and many other) purposes. 

The assumption that p(A~A2/13) is analytic and 
uniform is often strikingly wrong as shown, for 
example, in ),-ray rocking-curve measurements (see, in 
particular, Schneider, 1977). Highly non-uniform 
mosaic structure seems to arise from mutual misalign- 
ment of regions of the crystal that are large in 
comparison with mosaic blocks. Such characteristics 
are thus much more likely to be encountered in crystals 
of the dimensions used in neutron-diffraction experi- 
ments than in X-ray diffraction. When the mosaic 
structure is uniform it seems to be described well by a 
Gaussian or Lorentzian form (Lehmann & Schneider, 
1977; Becker & Coppens, 1975); when it is signifi- 
cantly non-uniform the standard, analytic model be- 
comes an approximation, possibly a bad one. Again, 
how bad rather depends on whether the objective is a 
good statistical description of crystal microstructure 
or an adequate extinction correction. The long-range 

inhomogeneities revealed in the y-ray rocking curves 
are probably less important than they might appear to 
be for extinction in integrated intensity measurements - 
when smaller crystals are often used and the relevant 
interaction with the crystal occurs over a distance 
within which the mosaic structure is more nearly 
uniform (Becker, 1977). This exposes a difficulty with 
the concept of a p(AIA2A3) function as a definite, 
intrinsic property of a given crystal: different experi- 
mental measurements (),-ray rocking curves, neutron- 
diffraction rocking curves, extinction refinements) may 
'see' different p.d.f.'s (Lehmann & Schneider, 1977). 
So, once the mosaic structure departs from being 
ideally uniform, p(A 1A 2 d3)  has to be defined in relation 
to a particular type of measurement; and clearly this 
must be borne in mind in comparing different measure- 
ments. However, given a p(A~A2A3) defined by a 
particular experiment, no matter how non-uniform the 
mosaic structure, the general prescription for relating 
this P(AIA2A3) to pA(A,D) remains valid. Thus the 
restriction* in this paper to consideration of a uniform 
mosaic structure described by a Gaussian form of p.d.f. 
is not, in itself, an approximation: it is just a particular, 
possible example. 

(2) The incident beam has been taken to be perfectly 
collimated (and monochromatic). This is equivalent to 
deconvoluting the resolution function. Since, as has 
been stressed, extinction essentially depends on the 
interaction between each incident photon (neutron) and 
p(A~ A2A3) as 'seen' by it, this assumption is not - in this 
context - an approximation. But, of course, the diver- 
gence (in space and wavelength) of the primary beam 
must be taken into account in deconvoluting p~(A,D) 
from rocking-curve measurements, and in con- 
siderations of collimation conditions for the measure- 
ment of whole integrated intensities [and pA(A,D)]. 

(3) Even for a large, perfect crystal a Bragg 
reflection has a finite intrinsic width - of the order of a 
few seconds of arc (James, 1967). And in a mosaic 
crystal, reflections from each mosaic block will be 
diffraction-broadened in inverse proportion to the size 
of the mosaic block along u, the scattered-beam 
direction (see above and Thornley, 1980). For many 
crystals the 'width' of p(A~ A 2 A3) is less than a minute 
of arc; at most, it is a few minutes of arc. So any 
incident photon (neutron) can, in fact, diffract from all 
mosaic blocks whose orientations lie in adjacent 
co-reflecting surfaces of p(A~ A2A3) over a finite range 
along D: this range depends on the intrinsic width and 
the diffraction broadening in relation to the width of 
p(AIA2A3) along D. The intrinsic width has, approxi- 
mately, the form of a rectangle function (James, 1967); 
the diffraction-broadening function B(D) introduced 

* The fact that the crystals used by Lehmann & Schneider (1977) 
do not conform to this restriction, being macroscopically bent, does 
not invalidate the use made of their results, because there was no 
comparison between measurements of different types. 
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earlier has long Lorentzian-like tails (Thornley, 1980). 
The combined effect (by convolution) will be a 
broadening function, B' (D), which is wider than B(D) 
by the intrinsic width, but otherwise (usually) of a 
closely similar form. With B'(D) taken into account, 
the one-dimensional function 'seen' in the scattering 
process becomes pA,(A,D), the convolution of 
pA(A,D) with B'(D). When B'(D) is somewhat nar- 
rower than pA(A,D) the latter function will dominate 
the convolution. Then pA,(A,D) will have a form very 
similar to that of pA(A,D) and they will differ little in 
width. Under these conditions the approximation used 
in the earlier part of this paper [that pA,(A,D) and 
pA(A,D) are the same - i.e. that type I extinction 
predominates] is a good one. And it has been shown 
that these conditions are indeed those more commonly 
encountered in practice, especially when extinction is 
severe (Becker, 1977). In the remaining cases, where 
the widths of B'(D) and pA(A,D) are comparable, the 
Lorentzian-like tails of B' (D) will mean that PA, (A,D) is 
not only significantly wider than pA(A,D) but also is of 
a significantly different form.* 

It is worth considering how B(D) and pA(A,D) 
functions of comparable width are handled in refine- 
ments of the Becker & Coppens (1974, 1975) models. 
Often there is too much parameter correlation to refine 
together the parameters of p(A~A2A 3) and those 
describing the average mosaic-block (shape) ellipsoid. 
Then two separate refinements are carried out" type I in 
which the parameters ofp(A l A2A 3) are refined, taking 
the diffraction-broadening width to be zero; and type II 
in which the parameters of the average mosaic-block 
ellipsoid are refined, taking the width of p(A~ A2A 3) to 
be zero. The refinement that gives the better fit is 
accepted as the best that can be done. But note that the 
achievement of a satisfactory fit does not necessarily 
mean that the widths taken to be zero are even small. 
For the other situation, in which the parameters of 
p(A~ A2A3) and the average mosaic-block ellipsoid can 
be refined together, it has been found necessary (and 
adequate) to introduce the approximation that the 
complex form of B(D) is taken to be Lorentzian if a 
Lorentzian form of p(A~A2A 3) is being refined, and 
Gaussian if a Gaussian form of p(AiA2A 3) is being 
refined (Becker & Coppens, 1974). This is entirely 
acceptable insofar as it achieves (as it usually does) the 
central purpose of providing a good model of how 
much extinction happens - rather than how or why it 
happens. But the possibility of reaching clear con- 

* In such circumstances a crystal with an entirely Gaussian 
p(A~A2A3) could yield non-Gaussian rocking curves, because of the 
effect of the broadening function. And the shape mapped out in 
three dimensions by the widths of such rocking curves could be 
rather complex, being compounded of two representational surfaces 
- (i) for r.m.s.m.A, and (ii) for the variation in three dimensions of 
the half-width of B(D) - which need have no simple relationship 
with respect to size, detailed shape or relative orientation. 

clusions about the underlying distributions may be 
forfeited. For example, B(D) could be wide enough and 
of a sufficiently Lorentzian-like form that the 
Lorentzian/Lorentzian model yields a better fit though 
p(A 1 A 2 A3) is actually Gaussian. Similar remarks apply, 
a fortiori, to the first-mentioned case where only the 
separate type I or type II refinements can be achieved, 
unless it can be demonstrated independently that the 
distribution assumed to have zero width is indeed very 
narrow. 

From this discussion, it is evident that when the 
width ofB'  (D) is at all comparable with that of PA(A,D) 
it becomes very difficult to separate the two functions 
- both in rocking-curve measurements and in the 
refinement of current extinction-model parameters. The 
approximation made in this paper [that B'(D) has 
negligible width] is thus a reasonable one, not only in 
terms of simplification of presentation and what happen 
to be the more commonly encountered experimental 
conditions (see above), but also in terms of the 
conditions under which direct investigations of 
p(A1AzA3) are likely to be interpretable. [The other 
tractable case, B'(D) very much wider than pA(A,D), 
would be of considerable interest - though rather rare.] 

(4) It has been explained earlier that, though the 
co-reflecting surfaces in p(AIA2A 3) are not exactly 
planar, their curvature is small and unlikely to yield any 
detectable effect except for rather large mosaic spreads 
(30' or so) at high scattering angles. Any error in the 
estimate of extinction can be neglected because these 
conditions are precisely ones under which extinction is 
itself negligible. It can be shown that the effect of this 
(usually negligible) curvature of the co-reflecting 
surfaces will be to skew pA,(A,D) to an asymmetric 
form, pA,,(A,D). Strictly, then. there is a quite complex 
relationship between pA,,(A,D) - the exact one-dimen- 
sional distribution function accessible to experimental 
measurement, and pA(A,D) - its approximate form, 
obtained as a simple projection of p(A~ A 2 A3). Given 
the type I condition that pA,(A,D) and pA(A,D) are 
sensibly identical, the difference between PA,, (A,D) and 
pA(A,D) is, as said, almost certainly unimportant for the 
purposes of modelling extinction; but the distinction 
need not be negligible for measurements (e.g. rocking 
curves) that are to be interpreted in terms of the precise 
form ofp(A 1 A2A3). 

(5) Finally, consideration should be given to the 
effect of scanning about an axis R that is not coincident 
with D. The most important point to make is that the 
one-dimensional distribution 'seen' by the scattering 
process remains pA(A,D) - with this again now used as 
an approximation for PA,,(A,D). This is evident from the 
consideration that at any point in the scan about R the 
process does not 'know' whether p(A~A2A a) is being 
turned about R or D. The only difference is that when 
R ~ D the direction of D is changing during the scan. 
Thus the co-reflecting surfaces successively picked out 
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ofp(A 1 A2A3) are perpendicular to a line which follows 
a curved path through p(A~ A 2 A3). This means that a 
reflection scanned about R 4: D will be broader than 
the same reflection scanned about D. The extinction 
will be altered in a way that depends on the detailed 
relative geometries of the R and D scans for each 
particular case. But, except for extreme geometries 
where the scan about R is exceptionally wide, the 
orientation of D will change little during the scan and 
the width and extinction will be little altered. 

The reciprocal-space description 

The discussion ofp(AiA2Aa) in this paper has been in 
terms of an abstract space - in that displacement along 
a line, say D, in p(A~A2A3) represents a rotation round 
D. In preparing the paper it has proved helpful to make 
frequent use of reciprocal-space constructions, though 
the two-dimensional nature of the reciprocal-space 
representation limits its usefulness in discussing and 
illustrating the essentially three-dimensional properties 
ofp(A 1 A 2 A3) and the related functions. 

Also, the relationship between the two represen- 
tations is not altogether straightforward. In reciprocal 
space the p.d.f, of mosaic-block orientations becomes a 
two-dimensional function centred on the mean direction 
of S and lying on a spherical surface of radius I Sl - a 
'spherical cap'. The co-reflecting surface in p(A 1A 2 Aa) 
now becomes a co-reflecting line which is the locus of 
intersection of the 'spherical cap' with the Ewald 
sphere. Perhaps the most important point to remember 
in relating the two representations is that misorien- 
tations about a direction, say D, appear along D in 
p(A 1 A2A 3) but appear along a direction perpendicular 
to D in reciprocal space. 

Summary 

Attention has been drawn to two points at which care is 
needed in considering anisotropy: first in deriving from 
the three-dimensional distribution function the one- 
dimensional function appropriate to the experimental 
conditions, and secondly in understanding how the 
corresponding directly-measurable quantities (e.g. 
r.m.s.m.) relate to the parameters of the three-dimen- 
sional function (e.g. a 1, a2 and a3). These con- 
siderations have been examined in detail for harmonic 
thermal motion and for mosaic-block orientation in 
secondary-extinction models. In both cases it is 
necessary to make the following distinctions carefully: 

(i) the definition of mean-square thermal displace- 
ment (or mosaic-block misorientation) relevant to the 
scattering process as against other conceivable 
definitions; and 

(ii) the variation in three dimensions of the three- 
dimensional p.d.f. (e.g. the ellipsoid of constant 
probability) as against the variation in three dimensions 
of the one-dimensional distribution 'seen' by the 
scattering process (e.g. the peanut-shell-shaped sur- 
face). 

In the case of extinction it has been argued that these 
further distinctions need to be made: 

(iii) how much the scattered beam is extinguished 
(independent of collimation) as against how much of 
the scattered beam is measured (i.e. passes through the 
detector aperture); 

(iv) the strength of the extinction (dependent on 
experimental conditions) as against the anisotropy of 
the mosaic-block orientation (an intrinsic property of 
the crystal); and 

(v) the essential purpose of extinction models of 
achieving an adequate modelling of the extinction per 
se (i.e. without necessary regard to true crystal micro- 
structure, or even, perhaps, to obtaining the same 
parameters from the same crystal in different experi- 
ments) as against the purpose of experiments 
specifically intended to investigate and model true 
crystal microstructure. 

From (i) and (iii) above it has been shown that 
p(A 1A 2 A3) is always 'seen' in the scattering process as 
pA(A,D) and that the form, ps,(A,D), suggested by 
Coppens & Hamilton (1970)is always incorrect. 

The detailed discussion of distribution functions for 
secondary extinction has been circumscribed by a 
number of approximations - closely equivalent to the 
conditions under which the Becker & Coppens (1974, 
1975) formalism works well and type I extinction 
dominates. The only significant restriction is thus the 
comparatively little attention given to diffraction 
broadening (type II extinction). For a discussion of the 
distribution functions involved in this latter case the 
reader is referred to Thornley (1980). The other 
restrictions and approximations have been shown to be 
reasonable for all but unusual, extreme cases; but they 
have been examined in relation to their possible 
relevance to detailed experimental investigations. It is 
concluded that it is prudent to restrict investigations of 
mosaic-block orientation to crystals with (a) the width 
of B' (D) very much less than that ofpA(A,D ) and (b) a 
very uniform mosaic structure. 

Throughout the preparation of this paper I have 
enjoyed the generous advice and encouragement of Dr 
F. R. Thornley. I gratefully acknowledge detailed 
constructive criticism of the first draft by Dr M. S. 
Lehmann and Dr J. Hutton; also suggestions for small 
amendments to the final version from Dr G. J. 
McIntyre, Professor W. Cochran, Professor D. W. J. 
Cruickshank and Professor A. Vos; and some kind 
assistance with mathematical problems from Dr A. D. 
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Bruce. The diagrams were executed by Mr J. McNeill 
of Edinburgh University's Audio-Visual Services: I am 
glad to record my thanks to him for his patient and 
painstaking work. 

APPENDIX 

To avoid unnecessary confusion, some differences of 
notation between this paper and those to which it refers 
are set out. Earlier papers are abbreviated to N for 
Nelmes (1969), TN for Thornley & Nelmes (1974) and 
BC for Becker & Coppens (1974, 1975). 

(i) This paper 

pA(x,n) 

Ps(x,n) 

pa(d,D) 

PB, (A,D) 

B(D) 

N 

PA ('~i) 

Ps(X1) 

TN BC 

PE(A,D) W'(eI,D) 
P,(A,D) W(~I,D) 

G(el) 

(ii) In the discussion of diffraction broadening [the 

B(D) function] the reflected beam direction is denoted 
u in accord with BC; elsewhere it is denoted k. 

References 

BECKER, P. (1977). Acta Cryst. A33, 243-249. 
BECKER, P. • COPPENS, P. (1974). Acta Cryst. A30, 

129-147, 148-153. 
BECKER, P. & COPPENS, P. (1975). Acta Cryst. A31, 

417-425. 
COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A26, 

71-83. 
DENNE, W. A. (1977). Acta Cryst. A33, 438-440. 
JAMES, R. W. (1967). The Optical Principles of the 

Diffraction of X-rays, 7th reprinting, p. 58. London: Bell. 
LEHMANN, M. S. & SCHNEIDER, J. S. (1977). Acta Cryst. 

A33, 789-800. 
NELMES, R. J. (1969). Acta Cryst. A25, 523-526. 
NELMES, R. J. (1977). Fourth Europ. Crystallogr. Meet., 

Abstract PI. 35, p. 162. 
SCHNEIDER, J. R. (1977). Acta Cryst. A33, 235-243. 
THORNLEY, F. R. (1980). Acta Cryst. Submitted. 
THORNLEY, F. R. & NELMES, R. J. (1974). Acta Cryst. A30, 

748-757. 
WILLIS, B. T. M. & PRYOR, A. W. (1975). Thermal 

Vibrations in Crystallography. Cambridge: University 
Press. 

Acta Cryst. (1980). A36, 653-656 

The Application of Direct Methods to Centrosymmetrie Structures containing Heavy 
Atoms. III 

By PAUL T. BEURSI~ENS, PETER A. J. PRICg AND TH. E. M. VAN DEN Hagg 

Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands 

AND R. O. GOULD 

Edinburgh University, Department of  Chemistry, West Mains Road, Edinburgh EH9 3J J, Scotland 

(Received 21 November 1979; accepted 11 February 1980) 

Abstract Introduction 

Direct methods are applied to difference-structure 
factors for a structure containing one or more heavy 
atoms at known special or pseudo-special positions, 
such that the heavy atoms do not contribute to several 
reflection parity groups. Phases of reflections in these 
parity groups, represented by symbols, are analysed by 
the sign-correlation method. Phases as well as am- 
plitudes of the difference-structure factors are refined 
by the general DIRDIF procedure as described 
previously. 
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In paper II (Gould, Van den Hark & Beurskens, 1975), 
direct methods were used to improve the phases as well 
as the amplitudes of the difference-structure factors. 
Experience with this procedure and application of 
similar procedures to non-centrosymmetric structures 
(Van den Hark, Prick & Beurskens, 1976; Prick, 
Beurskens & Gould, 1978) showed how to improve the 
procedure for the special case given in paper I 
(Beurskens & Noordik, 1971). In this special case the 
known atoms do not contribute to several reflection 
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